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POLICY IMPLICATIONS

ABSTRACT
Pharmaceutical policy often affects the revenues of innovation-oriented firms. 
The Inflation Reduction Act of 2022 is the most prominent recent example: It 
allows Medicare to negotiate price discounts on selected prescription drugs 
using the overwhelming bargaining leverage of the federal government. These 
prices will go into effect in 2026. Economic theory suggests that reductions in 
revenue eventually translate into reduced rates of innovative effort—generally 
measured using some proxy for research and development (R&D). The question 
then becomes: How large is the impact? Researchers often measure this effect 
using the “elasticity” of innovation, which measures the percentage change in 
a measure of innovation—like Phase 1 trial starts or new drug approvals—that 
results from a percentage change in expected or actual revenues. We critically 
review the literature estimating this elasticity, along with alternative estimation 
strategies (including a study by the Congressional Budget Office). All the studies 
conclude that the elasticity is positive—i.e., lower revenues lead to less R&D—
but estimates vary widely. However, we argue that a typical long-run elasticity 
associated with U.S. revenues lies within the range of 0.25 to 1.5, implying that 
for every 10% reduction in expected revenues, we can expect 2.5% to 15% less 
pharmaceutical innovation. Some caution is warranted, however, as a single 
elasticity does not apply to all contexts. The magnitude of the elasticity likely 
varies with time horizon, the magnitude of the price change, the size of the 
patient population and other marketplace factors.

Economic theory suggests that reducing drug spending by lowering drug prices—through regulation or other means—will 
reduce future medical innovation. A key policy question is: by how much? If the effects are large, price reductions by 
government fiat could have long-term negative impacts on population health, ultimately diminishing or outweighing the 
benefits of short-term spending reductions. This debate was pushed to the forefront by the 2022 Inflation Reduction Act’s 
Medicare Drug Price Negotiation program. 

We review the economic literature on this topic, with a focus on estimates of the elasticity of innovation, i.e. the percentage 
change in clinical trials or new drugs approved resulting from a percentage change in expected or actual revenues. We argue 
that a typical long-run elasticity associated with U.S. revenues lies within the range of 0.25 to 1.5, implying that for every 
10% reduction in expected revenue, pharmaceutical innovation falls by 2.5% to 15%. We also review what this evidence 
means for assessments by the Congressional Budget Office of the Inflation Reduction Act. As policymakers evaluate their 
options to manage healthcare costs, significant care should be taken to balance reductions in health outcomes long-term 
with short-term access improvements.
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1. While there is universal agreement in the economics literature that the elasticity is positive, some influential f igures publishing in other venues seem to argue against 
a positive elasticity; see Angell (2005). 

2. Throughout this paper, we use the term “short-run” elasticity to refer to the initial response that occurs once a response would be expected. Thus, the short-run 
elasticity of the flow of new drugs in response to an intervention might be measured several years after the intervention, and measuring a “long-run” elasticity might 
require decades. The long-run elasticity emerges from the initial intervention working its way through the market over a period of time that encompasses multiple 
generations of R&D projects: An initial intervention impacts revenues, which impacts innovation, which eventually impacts product market competition, which 
impacts expected profits, which has further impacts on innovation and so on.

INTRODUCTION

Policy interventions in the pharmaceutical industry often 
change the expected future revenues and current revenues of 
innovative firms. Such changes impact firms’ anticipated and 
current profits, and firms respond by adjusting their research 
and development (R&D) efforts. These adjustments impact 
discovery research programs, drug-development decisions 
and, ultimately, the flow of new drugs. The elasticity of 
innovation with respect to revenues is an important metric 
that quantifies firms’ responsiveness to such policy changes: 
It measures the percentage change in innovation—using 
the flow of new drugs approvals, or Phase 1, 2, or 3 starts—
caused by a percentage change in revenues, typically expected 
future revenues. This paper evaluates alternative methods for 
estimating this elasticity and reviews existing estimates in 
the literature. Its goals are to distinguish credible methods 
from non-credible ones, evaluate studies that employ credible 
methods, and summarize what is known about the typical 
magnitude of elasticity and factors that impact the magnitude. 

 This white paper is aimed at PhD-level economists, policy 
analysts and similar professionals interested or involved in 
policymaking in the pharmaceutical industry. The paper 
assumes familiarity with the concept of an elasticity, the basic 
features of the process of drug development, and features of 
the industry such as therapeutic classes, on-patent periods 
and post-expiration generic entry (see Lakdawalla (2018) 
for a review of these features). We discuss the strengths and 
weaknesses of alternative estimation techniques in the context 
of estimating elasticities of innovation. Most of the paper 
is accessible to a broad audience of researchers and policy 
professionals, but we delve into technical details in some cases 

where necessary for interpreting results or guiding future 
research. 

 Three primary conclusions are reached:

1. Cross-sectional and aggregate time-series methods are 
poorly suited for estimating the elasticity of innovation. 
Credible methods involve panel-data analyses or 
parameterized computational models. 

2. All existing studies employing credible methods have 
shortcomings that could make a reasonable skeptic question 
the resulting estimate(s) of the elasticity. Thus, while several 
studies exist, further work would be helpful.

3. All studies agree that the elasticity of innovation with 
respect to revenues is positive, but there is considerable 
variation in its magnitude (see table 1).1  

However, we argue that it would be reasonable for 
policymakers to view the typical long-run elasticity associated 
with U.S. revenues as ranging from approximately 0.25 to 
1.5.2 Moreover, modeling exercises conducted by Abbott 
and Vernon (2007) and Filson (2012) suggest that the 
magnitude varies with the time horizon studied, the size of 
the price change studied, factors influencing the cost of drug 
development and barriers to value-based pricing (see table 2). 
Further work on such factors is warranted.

 The paper proceeds as follows. Section 2 provides a simple 
version of a model introduced by Nordhaus (1969) that reveals 
how future expected profits and current ones are related to 
innovation. Given that profits cannot normally be observed 
and that policy changes of interest have more direct impacts 
on revenues, most empirical work examines data on revenues. 
We focus on the elasticity of innovation with respect to U.S. 

KEY TAKEAWAYS
1. The elasticity of innovation measures the percentage change in innovation (i.e. Phase 1 trial starts or new drug approvals) that 

results from a percentage change in expected or actual revenues.

2. Economic evidence demonstrates the elasticity is positive—i.e., lower revenues lead to less R&D—but estimates vary widely.

3. The long-run elasticity associated with U.S. revenues lies within the range of 0.25 to 1.5, implying that for every 10% reduction 
in expected revenue, pharmaceutical innovation falls by 2.5% to 15%. 

4. The magnitude likely varies with the time horizon studied, the size of the price change, cost of drug development, barriers to 
value-based pricing, and other marketplace factors.
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revenues, and the model helps clarify why we focus on the 
U.S.: About 64% to 78% of worldwide pharmaceutical profits 
derive from the U.S. market (Goldman and Lakdawalla 
(2018)) and, as a result, we expect that the elasticity of 
innovation differs substantially in the two regions. Section 
3 discusses the shortcomings of cross-sectional methods and 
aggregate time-series methods for estimating the elasticity of 
innovation. Sections 4 and 5 discuss panel-data analyses and 
computational models, respectively. Section 7 concludes with 
a summary of extant knowledge and recommendations for 
future work.

2. A SIMPLE MODEL AND ITS IMPLICATIONS 
FOR EMPIRICAL WORK

We provide a simple version of a model introduced by 
Nordhaus (1969) that reveals how a firm’s R&D spending 
depends on its current and future expected profits; our 
exposition draws on Lakdawalla (2018). The model has two 
periods: The firm chooses how much to invest in R&D in 
the first period, and the outcome (introducing a new drug to 
the market or not) is determined in the second. Denote the 
level of spending by I and the probability of success by p(I). 
Higher levels of I are associated with a higher probability of 
success and diminishing returns, so that p’(I)>0 and p’’(I)<0. 
The firm solves

   (1)

where φ(I) represents the cost of investment (which might 
be lower or higher than I depending on factors such as tax 
incentives and costs associated with external financing), r 
is the discount rate (r>0) and π is the firm’s expected future 
profit if R&D succeeds (for simplicity, we assume the future 
profit is zero if R&D is not successful). We assume that 
the marginal cost of R&D is positive and that it rises (or at 
least does not fall) with the level of investment (φ’(I)>0 and 
φ’’(I)≥0); assuming otherwise would be unrealistic, because 
it would imply that real-world R&D investments could 
potentially grow without bound. Optimal R&D investment 
satisfies: 

. (2)

This condition implies the following relationships: (1) 
increases in future expected profits, e.g., from policies 
that increase pharmaceutical prices, result in higher R&D 
spending3; and (2) increases in current profits might also 
encourage more R&D spending, as long as external financing 
is costlier to access than internal funds.4 

Since researchers typically lack good data on profits 
and since policy interventions of interest typically impact 
revenues, empirical work usually focuses on revenues rather 
than profits when estimating elasticities of innovation. Under 
the reasonable assumption that revenues impact innovation 
only through their impact on profits, the revenue elasticity of 
innovation  is equal to the profit elasticity of innovation 

 multiplied by the revenue elasticity of profit : 
                      (3) 

where R is revenues (either expected or actual) and π is the 
corresponding profits. If marginal costs of production are 
small relative to prices, then profits and revenues will tend 
to move together:  will be close to 1,5  and thus the 
revenue elasticity of innovation will be similar to the profit 
elasticity. Other circumstances can also lead to this outcome, 
such as a constant price elasticity of demand combined with 
constant marginal costs of production and profit-maximizing 
pricing decisions—modeling assumptions that are frequently 
employed when describing markets that are relatively free 
of intervention by governments (the U.S. in the case of 
pharmaceuticals).6 

Three other issues need to be addressed before proceeding. 
First, the market for pharmaceuticals is global, and the 
relationship between profits and revenues varies substantially 
between U.S. and non-U.S. markets. Since most studies in the 
literature focus on estimating the effects of changes in U.S. 
revenues, we focus on this effect too. In one case (Dubois et 
al. (2015)), we need to convert the authors’ elasticity to express 

3. The left-hand side of (2) is increasing in π, so if (2) holds initially and then π rises, I must rise to restore the equality.

4. Costly external capital is a standard assumption in the f inance literature, and Krieger et al. (2022) provide empirical support for the assumption in the context 
of drug development. If so, current profits can influence φ’ (I). At low levels of I, the f irm can rely on its current profit to cover its R&D spending, so φ’ (I) will 
be relatively low, but beyond some level of I, external f inancing will be required, and the extra f inancing cost will cause φ’ (I) to be relatively high. Suppose that, 
initially, (2) holds and that the f irm is using external f inancing, so φ’ (I) is relatively high. An increase in current profits suff icient to pay for the f irm’s current level 
of I will reduce φ’ (I) by removing the need for external funds: The left-hand side of (2) rises, and I must rise to restore the equality. Thus, an increase in current 
profits can result in more R&D spending.

5. Specif ically, define the net profit margin as  . If marginal costs are small relative to revenues, then . For instance, if f irms retain 90% of 
revenues as profit,  .

6. Optimal pricing implies that , where c is the marginal cost of production and εp is the own-price elasticity of demand. Multiply both sides by PQ 
(where Q is the output level) to obtain ; this is  . The latter equality (along with the constant-elasticity assumption) implies that 

 , which (using (3)) implies that the revenue elasticity of innovation equals the profit elasticity of innovation.
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it in terms of U.S. revenues; we explain how we do so when 
we discuss Dubois et al. (2015) in section 4. Second, policy 
interventions that impact revenues typically impact both 
expected future revenues and current ones, so an empirical 
analysis of how R&D spending responds to the policy change 
may often (although not always) mix the two effects. Thus, we 
typically refer to the elasticity of innovation “with respect to 
revenues” rather than distinguishing between expected future 
revenues and current ones. Third, some studies estimate the 
effect of price changes on innovation, while others estimate 
the effect of revenue changes. Studies that estimate price 
elasticities implicitly build in a prediction for how price 
will influence revenue. Where necessary, we convert price 
elasticities of innovation to revenue elasticities of innovation; 
we explain how we do so in section 5 in the context of the 
associated papers. 

3. KEY SHORTCOMINGS OF CROSS-SECTIONAL 
METHODS AND AGGREGATE TIME-SERIES 
METHODS

Cross-sectional empirical methods attempt to exploit 
variation in revenues across therapeutic classes (or some other 
unit of analysis) to estimate the elasticity. Roughly speaking, 
researchers using this approach would compare innovation in 
“high-revenue” classes to innovation in “low-revenue” classes 
and infer the elasticity from this comparison. Cross-sectional 
analyses of pharmaceutical innovation include Lichtenberg 
(2005) and Civan and Maloney (2009). In contrast, aggregate 
time-series methods would attempt to exploit variation in 
industry-level revenues over time to estimate the elasticity; 
Giaccotto, Santerre and Vernon (2005) conduct a study of this 
type. We argue that panel-data analyses and parameterized 
computational models are better suited for estimating 
elasticities of innovation than these alternative approaches. 

Cross-sectional methods have two primary shortcomings 
in this context. First, several hard-to-measure, nonrevenue 
factors contribute to different levels of innovation across 
classes, and many of these factors are correlated with revenues. 
Excluding these factors or mismeasuring them may bias 
the elasticity estimates. For example, some drug classes 
may feature more technological opportunities that make 
innovation easier, resulting in both more drug discoveries 
and higher revenues. Comparing a class like this to a 
counterpart with fewer technological advantages would 
mistakenly attribute differences in innovation to revenues, 
when in fact the cause is different technological possibilities. 

More generally, cross-sectional studies lack effective controls 
for differences in technological opportunities or other class-
level characteristics that drive both innovation and revenues. 
Second, even when variables can be measured well, cross-class 
comparisons may not be meaningful. For example, Civan and 
Maloney (2009) explore the link between the number of drugs 
in development in a class and the average U.S. price of existing 
on-patent drugs treating those diseases, but it is not clear how 
to measure prices to facilitate comparisons across classes, and 
the estimates are wholly reliant on such comparisons.

In contrast, panel-data analyses can include drug-class 
“fixed effects” to absorb and net out hard-to-measure and 
persistent differences in class characteristics.7  In effect, such 
an approach focuses on within-class revenue change as a driver 
of within-class innovation change. As long as technological 
opportunities and other class-level factors remain constant 
over time, this approach will properly net such factors out of 
the resulting estimates. Naturally, factors that vary over time 
within a class continue to pose problems— e.g., if some classes 
suddenly experience a burst of technological opportunity at a 
point in time, this approach will fail to net out this change 
within the class. For this reason, panel-data analyses are 
often combined with the use of “natural experiments” that 
change revenue differently across different segments of the 
market. Examples of such experiments are demographic 
trends like aging that raise demand for treatments of disease 
associated with old age (Acemoglu and Linn (2004); Dubois 
et al. (2015)) or policy changes like Medicare Part D 
(Blume-Kohout and Sood (2013)). Another approach to 
solving the problem of confounding cross-sectional variation 
is a computational model built upon explicit analysis of 
technological opportunities, the demand for new drugs, 
institutional features of the marketplace, and other variables 
that can plausibly drive both innovation and revenues. This 
approach is often referred to as “structural modeling” because 
it explicitly specifies and estimates the underlying structure of 
firms’ profit functions and consumer preferences.

Aggregate time-series analyses fare little better than cross-
sectional analyses for at least two reasons. First, there is 
no natural control group for interventions, making such 
analyses vulnerable to coincidental time trends. For example, 
if technological breakthroughs in drug-discovery methods 
happen to coincide with increases in the demand for drugs, 
an aggregate time-series analysis would mistakenly see these 
two unrelated trends solely as the effect of higher revenues on 
innovation rates. Panel-data analyses usually feature control 
groups and natural experiments to root out this problem. They 

7. For estimating within-class impacts across time, price comparisons could potentially be meaningful (if prices could be measured well), but in cross-sectional analyses, 
different classes are associated with different health outcomes and production costs: Comparing prices across classes is comparable to comparing prices across different 
types of clothing (shirts, pants, shoes, etc.). Of course, issues can remain even in panel-data analyses if the analysis focuses on prices. Obtaining accurate pricing data 
is challenging for all types of empirical analyses because net prices (the prices actually paid) can differ substantially from list prices. Net prices for on-patent drugs are 
trade secrets and are diff icult to estimate. This challenge helps explain why empirical work tends to focus on revenues. 
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focus on a well-understood and narrowly defined change 
in revenue for some classes of drugs. The causes of such a 
revenue change can be identified and shown to be plausibly 
unrelated to other trends in innovation. On the other hand, 
structural models address this problem by enumerating and 
modeling variables that cause trends in both revenue and 
innovation.

Second, in an aggregate time-series analysis, the only 
way to increase the sample size is to extend the sample to 
include earlier years, but then one needs to consider whether 
observations from 50+ years ago provide useful insights 
into empirical relationships in the current environment. 
Technologies, approaches to innovation, R&D tax incentives, 
Food and Drug Administration regulations and other business 
conditions have changed substantially over time.8 In contrast, 
in a panel-data analysis, the sample size is determined partly 
by the number of therapeutic classes included: Following 100+ 
classes for a relatively short period of time yields a substantial 
sample size. Structural models also permit modeling different 
therapeutic classes and business environments. 

4. PANEL-DATA ANALYSES

Panel-data analyses follow multiple therapeutic classes over 
time; the analyses combine a cross-sectional dimension (the 
classes) with a time-series dimension (the time period). 
Many contemporary panel-data analyses also feature a 
quasi-experimental design to identify the effects of interest. 
Panel-data analyses are well-suited for the pharmaceutical 
industry because classes are appropriate units of analysis: 
Most R&D programs and innovations focus on particular 
classes, and product-market competition occurs primarily 
within classes. Panel-data analyses permit including class 
fixed effects and across-class period effects in the model: 
The first control for persistent differences across classes in 
multiple hard-to-measure variables, including technological 
opportunities, production costs, distribution costs, marketing 
costs and other factors; and the second control for differences 
over time in the macroeconomic or industry-level business 
environment. 

Acemoglu and Linn (2004)
Panel-data analyses also facilitate examining plausibly 
exogenous changes in revenues or related variables within 
classes over time by using quasi-experimental or natural 
experiment designs. For example, Acemoglu and Linn point 
out the challenge of reverse causality: Because innovations 
tend to expand the size of the market and thus expand 

revenues, too, this makes it difficult to estimate the elasticity 
of innovation with respect to market size. To address this 
challenge, Acemoglu and Linn exploit variation in market 
size driven by U.S. demographic changes to attempt to isolate 
exogenous changes in U.S. market size. They construct age 
profiles of users for each drug category, assume these profiles 
do not change over time, and then use changes in the age 
and income distributions over time to estimate changes in 
what they refer to as “potential market size.”9  They consider 
current potential market size and five-year leads of this 
variable. The panel includes 33 drug categories examined 
from 1970–2000. Innovation is measured using the flow of 
new drugs, and results are reported for all drugs (including 
generics), all nongenerics (including new indications) and new 
molecular entities (NMEs). The last category corresponds 
best to innovation. They find that the elasticity for all new 
drugs with respect to potential market size is approximately 
6, the elasticity for nongenerics is approximately 4 and the 
elasticity for NMEs is 4–6 (Acemoglu and Linn, p. 1051); the 
reported values are based on point estimates. These elasticities 
imply that revenue changes have large effects. For example, an 
elasticity of 4–6 implies that when the potential market size 
decreases by 10%, the number of NMEs falls by 40%–60% 
(we discuss the plausibility of such effects shortly).

One aspect of the Acemoglu and Linn findings raises some 
questions: They find much stronger effects of current revenue 
on current innovation than of expected future revenue on 
current innovation. Compared to other studies that focus 
explicitly on expected future revenues, Acemoglu and Linn 
may be estimating effects along a different axis of variation.

Blume-Kohout and Sood (2013)
Panel data also facilitate data-driven approaches to measuring 
the impact of policy changes and other interventions: The 
extent to which a policy influences revenues in a class 
determines the extent to which the class can be viewed as 
belonging to a “treatment” group or a “control” group. For 
example, Blume-Kohout and Sood note that Medicare Part D 
increased prescription drug use among seniors and would have 
greater impact on classes such as Alzheimer’s disease than on 
classes such as contraceptives. The introduction of Medicare 
Part D is a plausibly exogenous intervention (i.e., not 
driven by innovation) that impacts revenues, so it potentially 
facilitates estimating the elasticity of innovation with respect 
to revenues. The associated act—Medicare Prescription Drug, 
Improvement, and Modernization Act—was passed in 2003, 
and implementation began in 2006. Annual data from 49 
classes during 1998–2010 is employed, and fixed effects are 

8. Increasing the sample size by examining quarterly or higher-frequency data is inappropriate because pharmaceutical innovation takes years, not months or weeks.
9. The authors use the term “category” to refer to a collection of therapeutic classes.
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employed to account for persistent differences across classes. 

Blume-Kohout and Sood find that the passage and 
implementation of Medicare Part D is associated with 
significant increases in R&D (and new drug launches) for 
classes with high Medicare market shares. Time lags are 
relevant because of the time it takes to move through the 
phases of clinical trials. The estimated elasticity of Phase 1 
clinical trials that starts with respect to revenues is 2.4–4.7 
(Blume-Kohout and Sood, p. 335). The range of estimates 
corresponds to different time periods: The number of drugs 
entering Phase 1 increased 26% during 2004–2005 versus 
expected trends prior to the policy change. By 2006–2007, the 
increase was 33% versus expected trends and by 2008–2010 
it was 51%. They also report an elasticity of global new 
drug launches with respect to revenues of 2.8 in the period 
2008–2010 (Blume-Kohout and Sood, p. 334).

Dubois et al. (2015)
Turning to another panel-data analysis employing an 
instrumental-variables approach similar to the one used by 
Acemoglu and Linn, Dubois et al. find a lower elasticity: Their 
preferred point estimate is 0.23 (p. 844). Notably, they examine 
global revenues, and profit margins are substantially higher in 
the U.S. Therefore, a given change in global revenue may have 
more muted effects on innovation than a similar change in 
U.S. revenue. At the extreme, the elasticity of innovation with 
respect to non-U.S. revenues could be zero or close to zero. 
Their point estimate combines the U.S. and non-U.S. effects. 
They report that the U.S. accounts for approximately 40% of 
industry revenues. Using a 40% weight, the lower bound on 
the U.S. elasticity is .23 (under the assumption that the U.S. 
elasticity equals the non-U.S. one), and the upper bound is .58 
(under the assumption that the non-U.S. elasticity is zero).

An additional aspect of the research design in Dubois 
et al. is notable as both a strength and a weakness. They 
compute the expected net present value of revenues to 
explicitly measure expected future revenues as the driver of 
current innovation. This may help explain, for instance, why 
their parameter departs from Acemoglu and Linn, who use 
a very similar natural experiment. However, this approach 
also has a downside: To compute long-run future revenues, 
they are forced to impute a meaningful amount of their 
data. Specifically, they observe revenues during the period 
1997–2007, and they use available data to compute average 
yearly rates of change in revenues by product age. Then they 
use the average yearly rates of change to impute revenues out 
of sample backward in time for each drug to generate up to 

a 20-year life cycle for each drug; these data are employed to 
estimate expected market size over the period 1977–2007. 
Thus, estimating the elasticity of interest relies heavily on 
imputed data that pertain to 1977–1996 (for each drug, from 
nine to 19 of the 20 years of revenues data are imputed). 
If the measurement error associated with imputation is 
classically random, their imputation would not be cause for 
concern in a sufficiently large sample (the authors examine 
630 active ingredients).10 However, the analysis cannot assess 
whether the measurement error is random, and nonrandom 
measurement error could potentially bias the estimated 
elasticities toward zero. 

Panel-Data Analysis Summary
Taken at face value, the estimates of Acemoglu and Linn and 
Blume-Kohout and Sood suggest the elasticity of innovation 
with respect to revenues is substantially higher than 1: The 
point estimates are approximately 5 and 2.8, respectively. 
Meanwhile, Dubois et al. offer a range of .23 to .58. 

We can narrow the range somewhat by clarifying several 
differences among the studies. First, Acemoglu and Linn 
estimate the effect of “potential” market size (i.e., revenue), but 
their measure likely differs from the market size firms actually 
anticipated during the period of their study. Acemoglu and 
Linn note that a 1% increase in their measure of potential 
market size corresponds to a 4% increase in actual size. Thus, 
the implied elasticity with respect to actual market size is 
1–1.5 rather than 4–6, which is substantially closer to Dubois 
et al., albeit still meaningfully different. Another potential 
concern is that Acemoglu and Linn do not include biologic 
drugs in their analysis. During the period they analyze 
(1970–2000), biologics became increasingly important in the 
flow of new drugs.

Blume-Kohout and Sood’s results should also be interpreted 
in the proper context. Their elasticities represent short-run 
impacts in the sense that the timing of impact is associated 
with the first generation of Phase 1 starts and new drug 
introductions impacted by the policy change. As these projects 
and products mature (over the course of many years), there will 
be subsequent impacts on future generations of projects. As 
discussed in the next section, short-run impacts may be larger 
than long-run ones.11 

Finally, it is worth noting that not all policy interventions 
that impact revenues lend themselves to estimating the 
elasticity of innovation. Examples from Finkelstein (2004), 
which involve vaccines rather than prescription drugs, provide 
useful illustrations. A 1991 recommendation from the Centers 

10. The authors employ instrumental variables, so classically random measurement error would not introduce asymptotic bias into their estimates.
11. In contrast, Acemoglu and Linn (2004) and Dubois et al. (2015) focus on how firms respond to long-run actual and anticipated trends in market size; their 

estimates are reasonably interpreted as long-run elasticities.
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for Disease Control and Prevention that all infants receive 
the hepatitis B vaccine resulted in vaccination rates jumping 
from essentially zero to 90% over a decade. While revenue 
clearly increased, the concept of an elasticity is of limited use 
because going from zero to anything positive is an infinite 
percentage increase. Hepatitis B vaccine clinical trial starts 
experienced a finite percentage increase (from 1.25 starts per 
year in 1983–1986 to 3.25 per year in 1996–1999), so the 
corresponding elasticity is zero. One can potentially compute 
an arc elasticity (the arc elasticity is .44 in this case), but arc 
elasticities are the subject of many criticisms (see Phillips 
(1993) for a discussion of the various critiques that have been 
levied), including the problem that the arc-elasticity concept 
admits many different possible elasticity calculations that 
cannot be tested against each other.12 For another example, a 
1993 decision that Medicare would cover 100% of the cost of 
the flu vaccine for Medicare recipients potentially impacted 
flu vaccination rates: Flu vaccination rates were approximately 
50% prior to the policy change and increased from zero to 
15 percentage points after the intervention. However, clinical 
trial starts per year experienced an infinite percentage increase 
(from zero starts in 1983–1986 to three in 1996–1999). Thus, 
once again, computing an arc elasticity is the only option: If 
we assume an increase in the vaccination rate from 50% to 
57.5%, the arc elasticity is 14.33. 

5. PARAMETERIZED COMPUTATIONAL 
STRUCTURAL MODELS

Panel-data analyses are clearly useful for estimating elasticities 
of innovation, but they have multiple shortcomings. Perhaps 
the most famous is the one attributed to Robert Lucas (the 
“Lucas critique”) that changes to the policy environment 
can substantially alter the way firms and consumers respond, 
leading to different relationships among economic variables of 
interest (Lucas, 1976). Parameterized computational models 
(sometimes also referred to as structural models, as noted 
earlier) address the Lucas critique and facilitate insights 
that can be difficult or impossible to obtain any other way. 
Structural models specify firms’ objective functions, strategy 
sets and features of the business environment, and when the 
model includes multiple firms, the model typically requires 
that the market is in equilibrium. The parameters are selected 
so that the key inputs and outputs of the model match facts 
such as the average R&D expenses associated with bringing 
a new drug to market and the average flow of new drugs. 
The impacts of policy interventions or other changes in 
the business environment are relatively straightforward to 
consider: The researcher can change one or more parameters 
and observe how firms’ choices and market outcomes change 
in response. 

Interventions that have no precedent in history (e.g., no 
matching “natural experiment”) can be difficult to study using 
reduced-form approaches but are relatively straightforward to 
examine with an appropriate structural model. For example, 
suppose that revenues in a class during a sample period 
fluctuate between a lower bound of RL and an upper bound 
of RU. A researcher employing panel-data methods will use 
the available variation in revenues to estimate the elasticity 
of interest. Suppose the researcher is interested in examining 
the implications of an intervention that will reduce revenues 
well below RL. This amounts to an out-of-sample projection, 
and it is well-known that regression coefficients need not 
remain stable out of sample. Given this, reasonable skeptics 
are unlikely to be persuaded by a regression-based analysis of 
the intervention. In contrast, parameterized computational 
models emphasize structural parameters that are less likely 
to depend on levels of revenues (parameters of cost functions 
and utility functions, technical probabilities of success in 
R&D and so on). The models also ensure that the responses 
of firms (and thus market outcomes) are compatible with 
the behavioral rules of the model (which can include an 
assumption that firms maximize their values along with a 
requirement that the market is in equilibrium). The models 
are potentially better suited than reduced-form regressions for 
evaluating the implications of substantial interventions that 
lack historical precedents. 

Another key advantage of structural models is that they 
can easily incorporate forward-looking decision-making: 
Expected future values can drive choices. While it is possible 
to incorporate such values into reduced-form panel-data 
regressions, regression-based approaches typically model 
outcomes as functions of current or lagged values of the 
independent variables. 

Abbott and Vernon (2007)
For an example of a structural approach, Abbott and Vernon 
use Monte Carlo techniques to model how U.S. price controls 
would impact Phase 1 starts. Firms base their decisions on 
net present value (NPV). Projects are heterogeneous, and 
the range of possible parameter values is determined using 
estimates from the literature of development costs by phase, 
probabilities of success by phase and future revenues (along 
with variation in these across projects). 

Abbott and Vernon focus on the impacts of price reductions 
on Phase 1 starts. Price elasticities are smaller than revenue 
elasticities because demand is downward sloping: A given 
percentage change in price leads to a smaller percentage 
change in revenue because the output adjustment offsets the 
price change. Abbott and Vernon assume the price elasticity of 

12. The arc elasticity uses two points to compute the elasticity of y with respect to x: {x0, y0} and {x1,y1}. The typical formula is .   
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demand (in the U.S. market) is -.3. They base this on Coulson 
and Stuart (1995), but more recent work finds similar point 
estimates: Duggan and Scott Morton (2010) estimate -.38 
and Einav et al. (2018) estimate the elasticity of branded 
drugs is -.32 and class-level elasticities range from -.32 to -.26. 
Thus, a 10% U.S. price increase yields a roughly 3% decrease in 
U.S. demand, so U.S. revenues rise by 7%: U.S. price elasticities 
should be divided by .7 to convert them to revenue elasticities. 

Abbott and Vernon’s figure 6 shows the relationship between 
different percentage changes in prices and percentage changes 
in Phase 1 starts. Higher price reductions are associated 
with higher elasticities. Interpreting the figure suggests that 
the price elasticity for large price reductions (40%–50%) is 
close to 1, which suggests the revenue elasticity is 1.4. The 
price elasticity for small price reductions (10%–25%) is much 
lower; it is perhaps .4, which suggests a revenue elasticity of 
approximately .6. 

Structural models require multiple assumptions about 
the structure of underlying incentives in an economy, and a 
reasonable skeptic could question several such assumptions. 
For example, Abbott and Vernon assume that R&D costs 
and the resulting revenues of products are uncorrelated, 
and it could be more realistic to allow nonzero correlations. 
However, there are good reasons to think that the basic 
conclusion that elasticities are increasing in the magnitude of 
the price reduction is robust. If future U.S. prices are initially 
expected to be profit-maximizing choices of price-setting 
firms, then small reductions in price should not affect future 
expected profits. Thus, a very low-impact price cap is likely 
associated with a low or zero price elasticity of innovation. 
Now consider a substantial price cap that is expected to drive 
future prices down to marginal cost: Expected profits go to 
zero, so innovation halts. Prices do not drop 100% (because 
marginal cost is positive), but innovation drops 100%, so the 
short-run price elasticity of innovation exceeds one. 

Abbott and Vernon’s results illustrate how the elasticity of 
innovation with respect to U.S. revenues depends on the size 
of the revenue reduction, but it also seems likely that—for 
large percentage changes in revenues—the elasticity depends 

on the direction of the revenue change: A less than 100% 
price reduction can potentially drive profits to zero, but a less 
than 100% price increase would not have as large a percentage 
impact on increasing profits. 

Filson (2012)
While Abbott and Vernon focus on single-firm, single-project 
decision-making, Filson constructs an infinite-horizon, 
computable, dynamic, industry equilibrium model of 
pharmaceutical R&D and oligopoly product-market 
competition at the level of a therapeutic class. The model is 
parameterized so that equilibrium outcomes match facts such 
as the average R&D expenses and probabilities of success 
associated with bringing a new drug to market, the average 
flow of new drugs in a class and the distribution of new-
product values (Filson, table 2). The resulting parameterized 
structural model is used to examine alternative price-control 
policies (price controls are modeled as upper bounds on prices 
firms can charge that might depend on product characteristics 
or features of the business environment). 

In a base-case scenario, the long-run elasticity of innovation 
with respect to revenues is approximately one.13  This long-run 
impact occurs over multiple decades. The analysis in Filson 
suggests that the short-run elasticity likely exceeds the long-
run one. To understand why, consider a thought experiment 
where expected revenues rise. Firms initially respond by 
increasing their R&D efforts. Subsequently, however, this 
initial burst of activity discourages R&D, because rational 
firms will realize that the initial burst will lead to more 
competition and lower future profits (of note, firms in Filson’s 
model forecast the degree of competition they will likely face). 
Thus, the subsequent response dampens the initial burst of 
R&D and thus lowers the long-run effect of the initial growth 
in revenue.14

When a policy change—such as the introduction of 
Medicare price negotiations—occurs in Filson’s model, the 
preexisting number of drugs in development is likely far 
from the long-run mean levels associated with the post-

13. This conclusion emerges from Filson’s table 6: A 10% increase in the patient population leads to a 10% increase in revenues in the long run, and this change is 
associated with an approximately 10% increase in the flow of new drugs over the long run.

14. Technically oriented readers might f ind some additional details helpful, and Filson provides further elaboration. The model is set in discrete time with six-year 
periods. Successful research programs during this period yield candidates in development during the next period, and successful candidates in development during 
this period yield marketable on-patent products during the next period. On-patent products engage in differentiated-products Bertrand competition for two periods 
before the patent expires, so the product market potentially contains “young” products in the f irst period of their market life and “old” ones in the second period of 
their on-patent market life. Firms are forward-looking value maximizers, so they look ahead to anticipate the competition from old products they will face when 
they enter the product market and adjust their research-project starts accordingly. Thus, if the number of drugs in development is currently above its long-run mean, 
forward-looking value-maximizing f irms contemplating beginning research programs anticipate high competition from old products in future product markets and, 
in response, they pursue fewer new research projects (relative to the long-run mean). Outcomes are random, but pursuing fewer projects tends to eventually result 
in levels of drugs in development (and eventually, new drugs on the market) that are below the long-run average. Thus, a relatively high number of old products 
tends to be associated with a relatively low number of young ones. Similarly, if f irms anticipate a relatively low number of old products when they enter the product 
market, there will likely be a relatively high number of young ones. Thus, over time, the levels of R&D spending, projects in development and new drugs move 
toward their long-run mean levels, but they do so through fluctuations around the long-run means that tend to diminish over time. 
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15. Adams uses the term “expected returns” to refer to product-market profits; we refer to profits to maintain consistency with the rest of this paper.
16. As we have already discussed, a 100% reduction in profits can be achieved with a less than 100% decrease in prices because marginal costs of production and 

distribution are not zero. Thus, a given profit elasticity of innovation is associated with a higher price elasticity of innovation, which implies a higher revenue 
elasticity.

17. Philipson and Durie (2021) provide related critiques of the CBO’s work in this area. 
18. Firms in Filson’s model begin research programs until the NPV of the marginal research program reaches zero. Policies that reduce expected future revenues drive 

this NPV below zero, so fewer research programs are pursued. Candidates in development in Filson typically have NPVs substantially above zero, so only extreme 
reductions in expected future revenues make candidates unworthy of pursuit.

change environment, so research efforts adjust substantially 
in response: The initial short-run response exceeds the 
eventual long-run impact. An adjustment process of this 
sort has implications for studies such as Blume-Kohout and 
Sood: They are observing the short-run change in innovation 
that follows the passage of Medicare Part D; at the time of 
their paper, there was insufficient data to gauge the long-run 
response. In general, evaluating long-run responses requires 
an approach that facilitates examining projects that are well 
beyond the sample period because, in this industry, such 
responses take decades. 

As an example of the short-run versus long-run magnitude, 
Filson considers a scenario in which all countries abandon 
price controls. The average number of research programs 
almost triples initially (a 200% increase) and then settles 
down to approximately 50% above its pre-intervention level 
(Filson, p. 124). Thus, in this case, the short-run elasticity is 
approximately four times the long-run one. 

Filson’s study also points to other factors that cause the 
elasticity of innovation with respect to revenues to vary by 
class. For example, in classes with small patient populations or 
fewer technological opportunities to develop new drugs, U.S. 
price controls can lead to a complete halt in innovation in 
the model. The intuition is that such classes attract relatively 
few R&D efforts even in the base case, so a revenue-lowering 
intervention can deter all efforts. This idea comports with the 
panel-data analysis of Dubois et al., who also find substantial 
variation in elasticities across therapeutic classes.

The Filson model also reveals the underlying forces that 
influence the magnitude of the innovation elasticity. First, 
barriers to entry in drug development reduce the elasticity. 
In the model, if there are high barriers to entry in R&D in 
a class (perhaps because of highly specialized know-how 
contained in only a few firms), firms earn abnormal profits 
(and achieve abnormal firm values) prior to U.S. price controls 
being imposed. In this case, relatively small price reductions 
need not impact R&D choices at all: All projects can remain 
viable even though expected revenues fall. Thus, the revenue 
elasticity of innovation in such cases would be zero. Of 
course, large price reductions could have substantial effects 
even in such cases. Whether such barriers to initiating R&D 
programs are empirically important—and which classes they 
impact—are questions future research could investigate. 

Filson’s analysis also suggests that nuances of the 
intervention could impact the elasticity: Different policies 
could yield different elasticities. For example, Filson compares 
U.S. price controls that permit higher markups on higher-
quality products to controls that do not and concludes that the 
latter reduce innovation more. 

Of course, no modeling effort can exhaust all possible 
scenarios, and models with different plausible assumptions 
could potentially generate different elasticities. While Filson’s 
analyses reveal several nuances of impacts (such as short-run 
versus long-run ones), circumstances and other factors that 
future empirical work should consider, future modeling efforts 
could potentially reveal additional factors.

Adams (2021)
In more recent work, Adams describes a structural model 
employed by the Congressional Budget Office (CBO). Adams 
analyzes a policy that lowers the expected present value of 
drugs expected to be in the top quintile of the distribution 
of the expected present value of profits by 15%–25%; this 
intervention results in a persistent 18% reduction in expected 
industry profits.15 The analysis concludes that there would 
be little immediate impact on the flow of new drugs (as 
altered R&D decisions take time to impact the flow of new 
drugs), but there would be an 8% annual reduction in the 
flow of new drugs by the third decade. The implied long-run 
elasticity with respect to expected product-market profits 
is approximately .45. For evaluating the impacts of U.S. 
price controls or comparable revenue-lowering policies, the 
elasticity with respect to profits provides a lower bound on the 
elasticity with respect to revenues.16  

 Other features of the CBO’s model help explain why 
the estimated elasticity of innovation is lower than the ones 
obtained by Abbott and Vernon and Filson.17 First, the CBO’s 
model restricts attention to the decisions to begin Phase 
1, Phase 2 and Phase 3 clinical trials, and policy changes 
are assumed to have no impact on preclinical discovery 
research. In contrast, in Filson’s model, policies have their 
most substantial direct impacts on discovery research. Once 
discovery research has yielded a candidate for development 
(a potential Phase 1 start), the option to pursue the candidate 
is typically worth taking because discovery costs are sunk and 
initial hurdles have been overcome.18 Thus, ignoring impacts 
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on discovery research results in a lower estimate of the 
elasticity of innovation; it essentially assumes that the flow of 
potential candidates that could begin Phase 1 is unaffected by 
the policy change. 

Second, the policy considered by Adams is assumed to 
impact only those firms whose expected present values of 
product-market profits lie in the top 20% of the distribution 
of expected present values of profits. Real-world policies 
do not target firms this way because it is not feasible to do 
so: Real-world policies directly impact prices or revenues 
rather than profits, and they impact realizations rather 
than expectations. The distinction between realizations and 
expectations matters, because a policy that impacts the top 
20% of the revenue distribution impacts the expected revenues 
of all firms with any chance of ending up in the top 20%, and 
this is a much larger set than those whose expected revenues 
lie in the top 20% (it includes all of this latter group but also 
includes many others whose expected revenues are not in the 
top 20% yet have some chance of ending up in the top 20%). A 
more plausible policy intervention would likely yield a higher 
estimate of the elasticity of innovation.19  

Third, the model lacks rational expectations: When 
entering a new phase, firms obtain new random “draws” of 
expected future product-market profits and R&D costs that 
are independent of their prior draws, but firms’ decision-
making fails to take this sequence of random draws into 
account. For example, firms contemplating beginning Phase 1 
base their decision on their current draws of expected profits 
and R&D costs without realizing their information will be 
invalid once they begin Phase 2. Rational forward-looking 
optimizers would realize that their current information will 
be invalid beyond Phase 1; they would anticipate new draws 
at the start of Phase 2.20 Under more realistic assumptions, a 
policy that impacts any part of the revenue distribution would 
affect all firms’ forecasts and hence their current decisions. The 
resulting elasticity of innovation would be higher. 

Another issue worth raising about the policy analysis 
in Adams is associated with the challenges of measuring 
innovation using the flow of new drugs. Not all new drugs 
have equal impacts on welfare. Policies that target the 
top 20% of the distribution of expected present values of 
profits target the drugs that are mostly likely to be widely 
prescribed and have the most substantial impact on health. 
Reducing the flow of these drugs likely has a much larger 

welfare impact than reducing the flow of more typical drugs. 
Analyzing the impacts of a policy that targets the top 20% 
of the distribution by measuring innovation using impacts 
on the flow of new drugs without adjusting for quality of the 
drugs is inappropriate. Filson provides an analysis (within the 
context of his model) showing that policy interventions that 
fail to take quality into consideration can have particularly 
devastating impacts on innovation and welfare. 

Summary of Structural Models
The elasticity estimates from the structural models in the 
literature are generally in the same range as the estimates from 
panel-data analyses. The rough concordance is encouraging 
and suggests that panel-data analyses may not be undermined 
by the Lucas critique.

Moreover, the structural models complement the panel-data 
analyses by revealing key factors that influence the magnitude 
of the elasticities observed. As summarized in table 2, Abbott 
and Vernon point out that large price reductions lead to larger 
elasticities of innovation and vice versa. Filson finds that the 
following factors increase the elasticity of innovation: high 
R&D costs, small patient populations (e.g., in orphan disease), 
low technological opportunities to develop new drugs, low 
barriers to entry in R&D, barriers to value-based pricing that 
allow firms with higher-quality drugs to be compensated 
accordingly and shorter time horizons. 

SUMMARY OF THE LITERATURE AND NEXT 
STEPS FOR RESEARCH

Table 1 provides a summary of the elasticity estimates from 
credible studies. The table focuses on changes in U.S. revenues; 
we would expect non-U.S. revenue changes to be associated 
with lower elasticities. The table also briefly summarizes 
the method employed and the primary potential concerns 
associated with the study. 

We argue that the weight of the evidence in table 1 (along 
with the interpretations of the studies we have provided) 
suggests that the typical long-run elasticity likely falls between 
0.25 and 1.5. This conclusion results from characterizing 
Blume-Kohout and Sood as focusing on short-run effects 
(which Filson’s analysis suggests are likely higher than long-
run ones), interpreting Acemoglu and Linn’s results using 

19. A simplif ied model provides an illustration of how a more realistic policy could have a larger effect. Suppose there are two possible revenue levels: Rh and Rl , where 

Rh>Rl . Suppose some f irms are sure to earn Rh , but others have an equal chance of earning Rh or Rl  (their expected revenue is ). A policy that targets 
those with expected revenue of Rh would impact only the f irst group, but a (more realistic) policy that targets all those who end up earning Rh impacts the expected 
revenues of both groups.

20. If f irms were rational optimizers, the conditional expectation in Adams’ equation 2 (p. 6) would be an unconditional expectation. Under rational expectations, 
a f irm contemplating beginning Phase 1 or 2 would know that its current information has no value for predicting its eventual product-market profits or the 
development costs associated with future stages. 
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actual market size rather than their measure of potential 
market size, and adjusting Adams’ estimate upward to reflect 
our discussion in section 5 (the elasticities from Abbott and 
Vernon are centered around one, and Filson finds a typical 
long-run elasticity of one). The range of variation is not 
trivial, but it provides a useful interval for assessing the risks 
and benefits of public policy. Abbott and Vernon and Filson 
suggest that several factors impact the magnitude of the 
elasticity (see table 2).

Future work should employ careful research designs, critical 
evaluations of assumptions and intermediate findings, and 
multiple robustness checks. Parameterized computational 

models will likely remain useful complements to panel-data 
analyses. Parameters or relationships that are difficult to 
estimate or examine empirically can be explored in models 
through alternative assumptions, and appropriately designed 
models make it possible to consider both short-run and 
long-run impacts of interventions. The factors impacting the 
elasticity identified by Abbott and Vernon and Filson can help 
guide future work, and further work exploring such factors is 
warranted.
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The table restricts attention to studies that employ panel-data analyses or parameterized computational models. The elasticities are 
based on the point estimates reported in the studies cited; we report a range of point estimates when the study emphasizes a range. 
Where necessary, we have converted the estimates in the study to express them as an elasticity of innovation with respect to U.S. 
revenues. 

Table 1. Implied Elasticities of Innovation With Respect to U.S. Revenues 

Implied Elasticity
4 -6 for “potential 
market size”; 
1-1.5 for “actual 
market size”

2.8; this is a short-run 
elasticity

.23-.58

Study
Acemoglu and Linn 
(2004)

Blume-Kohout and 
Sood (2013)

Dubois et al. (2015)

Method
A panel-data analysis attempts 
to control for endogeneity of 
market size using a measure of 
“potential market size.”

The analysis assesses how 
Medicare Part D impacts R&D 
efforts in classes with high 
Medicare market shares.

A panel-data analysis attempts 
to control for endogeneity of 
market size.

Primary Potential Concerns
Actual size and potential size are very 
different from each other, and this results 
in very different estimated elasticities. 

The estimate is a short-run elasticity; the 
analysis in Filson (2012) suggests the 
long-run elasticity could be much lower. 
Also, results might not generalize beyond 
the Medicare Part D policy change.

A large amount of the data associated 
with estimating market size is imputed, 
and imputed data potentially introduces 
nonrandom measurement error that 
could bias the estimates toward zero. 
The study also does not focus on the 
U.S.; it uses global data. 

Panel-Data Analyses

1.4 for price 
reductions of 
40%–50%;
.6 for price reductions 
of 10%–25%

1 in a benchmark 
case; the short-run 
elasticity exceeds 1, 
and results depend on 
circumstances

≥.45

Abbott and Vernon 
(2007)

Filson (2012)

Adams (2021; CBO 
study)

A parameterized model of 
firm-level NPV-based Phase 1 
starts facilitates examining 
policy changes.

A parameterized 
computational dynamic 
industry equilibrium model 
facilitates examining policy 
changes.

A parameterized model of 
Phase 1, 2 and 3 starts 
facilitates examining a policy 
change that targets highly 
profitable drugs.

The model ignores competitive 
interactions, and key parameters that 
impact counterfactuals cannot be 
estimated (for example, development 
costs and revenues are assumed to be 
uncorrelated).

The model is more useful for revealing 
what can happen under different 
structural assumptions and hypothesized 
circumstances than for isolating a single 
representative elasticity.

Several of the modeling assumptions bias 
the estimated elasticity toward zero.

Computational Models

Table 2. Factors That Structural Models Suggest Increase the Elasticity of Innovation 
With Respect to U.S. Revenues When U.S. Price Controls Are Imposed. 

Source

Abbott and Vernon (2007) 

Filson (2012) 

Factors That Increase the Elasticity of Innovation

Large price reductions 

High R&D costs
Small patient populations 
Low technological opportunities to develop new drugs
Low barriers to entry in R&D
Controls that do not allow firms with higher quality to obtain higher markups
The horizon being examined: The short-run response exceeds the long-run one
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