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KEY TAKEAWAYS
• Reopening businesses and schools will require reliable testing data.
• Frequent testing is an obvious solution, but costs will be prohibitive and supply may be

limited.
• Pooled testing offers a cost-effective and scalable solution, wherein tests are batched to test

multiple individuals simultaneously.
• Pooled testing could ramp up the number of tests while lowering testing costs, especially in

low-prevalence areas.
• Schools and businesses saddled with testing costs could lower costs by half or even three-

quarters.

Several states are starting to reopen businesses, starting 
with small businesses in Georgia.2 But many schools 
and large businesses remain closed, and the prospects 
for a return to school in the fall are unclear. Eventually, 
America will need to get back to business; the question 
is how.
	 Some have called for broad-based government 
testing — perhaps by the military.3 A more likely 
scenario is that employers will have flexibility in 
how they protect their customers and workforce. The 
Occupational Safety and Health Administration, for 
example, has issued guidance on preparing workplaces, 
but these are “advisory in nature.”4

	 Thus, decisions about reopening will likely be left 
to business leaders and school administrators. The 

decision process is unclear, but clearly depends on 
finding ways to identify anyone infected and keep 
them at home, where they will not spread the disease 
to other students, employees, or customers. Frequent 
testing seems like the natural answer. Yet, with current 
lab fees around $100 per test, repeatedly administering 
COVID-19 tests to an entire workforce or student 
body will become prohibitively costly for employers 
and schools already reeling from major economic 
dislocation.5 Moreover, the country likely doesn’t 
possess the capacity to test every worker or student. 
	 The Trump administration recently announced 
a strategy — in partnership with state and local 
governments and the private sector — to increase 
capacity to enable testing of 2 percent of the 

ABSTRACT
In the coming weeks and months, decisions about reopening businesses and schools while keeping 
employees and customers safe will likely fall to business leaders and school administrators. 
While frequent testing might seem like the natural answer, costs will quickly add up for American 
businesses and school systems already crippled in the aftermath of a major shutdown. Finding cost-
effective ways to test might provide a way out of the shutdown.

“Pooled testing” is a well-established approach to track infectious disease, wherein a lab tests 
batched samples of several people for the presence of active virus.1 If the test indicates at least one 
person in that pool is infected, repeat testing of the individuals in the infected pool can reveal the 
source. In contrast, if the pooled sample comes back negative, it could clear all members of the pool 
for work, at least until the next testing cycle. While there are inherent challenges in this approach, 
including choosing appropriate pool sizes and factoring in test-reliability concerns, our estimates 
suggest that pooled testing could lower testing costs by half or even three-quarters for many schools 
and businesses. Greater savings are incurred in low-prevalence areas. Employers need to identify 
COVID-19+ workers and do so at reasonable cost. Pooled testing is an effective tool for doing so. 

INTRODUCTION
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population.6,7 This is a step in the right direction, but 
some researchers estimate we need at least 5 million 
tests per day to begin reopening the economy, and 20 
million or more per day to fully remobilize.8 Despite 
recent advances, testing capacity still lacks sorely 
behind this demand.
	 In this working paper, we propose a scientifically 
feasible method to save money and scarce testing 
resources. “Pooled testing” is a long-established 
approach to tracking infectious disease, and has already 
been run successfully on coronavirus samples at labs in 
Stanford and Israel.1,9,10 Employers and school systems 
would do well to explore the results. By pooling, labs 
should be able to scale up to millions of tests per day 
using existing sequencing infrastructure, according to 
researchers at Harvard and MIT — far more than the 
country has achieved as of this writing.11 The science is 
not new, so almost any lab can adopt the protocols.
	 In pooled testing, specimen samples from several 
people are combined into a single pool. If none of the 
workers or students within the pool is positive, the 
pooled sample will come back negative and clear all of 
them for normal activities. On the other hand, if the 
test indicates at least one person in that pool is infected, 
further testing is performed on each individual in that 
pool.  This follow-up step does not require a separate 
round of specimen collection. Rather, each person’s 
sample is split into two at the beginning of the process 
– one is subjected to pooled testing, and the other set 
aside in case individual follow-up testing is required.
	 This strategy can be used with polymerase chain 
reaction (PCR) testing designed to determine whether 
someone is currently infected.i PCR testing can be 
used to isolate and quarantine those with active 
infections. The most efficient initial pool size depends 
on prevalence, with rarer conditions allowing larger 
pools.12 Given the current prevalence of COVID-
19, even 5–10-person pools of employees or students 
are likely to test negative, obviating the need for 
administering tests to each person. A recent study 
suggests that it is feasible to pool samples on this scale 
without significantly compromising the integrity of the 
PCR tests.13

	 A simple example illustrates the logic. Consider 
an employer with 100 employees in a region of the 
country believed to suffer from 5 percent prevalence of 
active COVID-19 infection. This employer splits up 
its workforce into 20 groups of five workers each. For 
simplicity, suppose that exactly five workers have the 

disease, so that the employer is experiencing the same 
prevalence as its overall region. Under pooled testing, 
no more than five pools will return positive tests. The 
employer then tests the employees in the positive pools 
individually. In this case, no more than 25 individual 
tests are run, since there are five pools testing positive, 
each with five workers. Ultimately, the employer has 
successfully identified all five of its COVID-19+ 
employees, but it only needed to run 45 tests — 20 
initial pooled tests and 25 individual follow-up tests. 
The employer saved 55 percent of the cost that would 
have been incurred via individualized testing.ii

	 Pooled testing works best when the employer or 
school system chooses pool sizes correctly. For instance, 
if pools are set too large, every pool might test 
positive. In this case, the employer gains nothing from 
that round of pooled tests. This issue is particularly 
salient in high-prevalence regions, where large pools of 
employees might routinely turn up at least one positive 
case. 
	 By contrast, employers in lower-prevalence regions 
can afford to use larger pools, because even large pools 
of employees have a good chance of testing negative 
in these regions. However, even relatively high-risk 
regions stand to gain from pooled testing. For example, 
pool sizes of four to seven employees could help the 
vast majority of employers reap most of the gains from 
pooled testing, even when they are highly uncertain 
about the prevalence of the illness in their workforce. 
	 We estimate that pooled testing could reduce testing 
costs by 80 percent in low-prevalence regions, and 
still save 50 percent for higher prevalence (5 percent) 
locations. Indeed, even if prevalence eventually climbs to 
10 percent, well above any current estimates, employers 
can save as much as 40 percent via pooled-testing 
strategies. 

THE ECONOMICS OF POOLED TESTING

Employers need to identify all their COVID-19+ 
workers and do so at minimum cost. We develop a 
simple model that identifies the optimal pool size to 
minimize the total cost of testing to the employer. We 
then quantify the savings to employers from pooled 
testing under the optimal pool size and under simple 
rules of thumb for employers that are uncertain about 
the prevalence of active infections in their workforce.
	 As with all diagnostics, COVID-19 tests are 
imperfect. In particular, several recent studies suggest 

i In contrast, serology tests are designed to determine the presence of antibodies, or whether someone has been infected in the past. Complementary serology testing could 
potentially be used to excuse immune individuals from the need for active-virus testing, though research is still ongoing to determine whether antibodies fully protect 
people from reinfection.
ii In this paper, we focus on the lab fees of the test itself, rather than the cost of sample collection, which is not necessarily affected by pooled samples, depending on how 
sample collection is deployed.
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that the sensitivity of PCR tests on samples collected 
by nasal swab is around 70 percent — meaning that 
about 3 in 10 infected patients will return a negative 
test result.14,15 Much of this error is driven by factors 
related to sample collection (e.g., the patient doesn’t 
have high enough viral-load levels at the time of 
collection or the swab didn’t reach the right place) 
rather than failures of the PCR test itself.16 But the 
costs of a false negative in this situation can be quite 
large — if someone believes they are free of disease 
when actually they are not, they risk spreading the 
disease to other employees, customers or students — 
the exact scenario that testing is trying to prevent. 
Ideally, testing sensitivity will improve with time; in the 
meantime, employers can combine diagnostic testing 
with other strategies, such as symptom monitoring and 
contact tracing. Later, we explore how imperfect test 
reliability can be managed and mitigated in the context 
of pooled testing. To start, we consider the simpler case 
of pooling with a perfect test. This simple, stylized 
case nonetheless neatly demonstrates the qualitative 
relationships among pool sizes, costs and infection 
rates.
	 We consider an employer with N workers. We 
confine our attention to a two-stage pooling strategy. 
In the first stage, the employer splits up its workforce 
into groups of equal size. In the second stage, the 
employer runs individual tests on all workers who 
belonged to groups that test positive. It is relatively 
easy to adapt and apply this framework to strategies 
with more than two stages. For example, employers 
in very low-prevalence regions might choose to run 
several rounds of pooled testing before taking the 
costly step of individual testing. For example, an 
employer might start with pools of 30 workers. Among 
the pools that test positive, it might then test subsets 
of 10 workers each to identify the remaining groups 
that require individualized tests. The conceptual results 
we derive here are applicable to these multistage 
strategies: Lower-prevalence regions can afford to test 
larger pools and can afford to field multiple pooled 
testing rounds before beginning individualized testing. 
Moreover, employers can learn over time from the 
prevalence level revealed in an initial round of testing. 
If prevalence is higher or lower than expected, pool size 
can be adjusted in the next round.17

	 We also assume for simplicity that workers are 
homogeneous in their risk of testing positive. This 
is without loss of generality, as the employer could 
simply stratify its workforce into subgroups by risk, 
performing the cost-minimization problem below on 

each of the subgroups individually. For example, it 
could first split up its workforce into those who have 
traveled to high-risk areas or encountered infected 
people, and those who have not. Since the prevalence 
of the illness is likely higher in the first group than the 
second, pool sizes ought to be smaller in the first group 
than the second. The analytic framework below could 
be separately applied to each group of workers.
	 Each round of testing costs τC. This could be 
interpreted literally as a single test, or more generally 
as a testing protocol. For example, some employers 
might choose to conduct two consecutive tests on the 
same worker or group of workers; if at least one of 
these is positive, the employer might deem that group 
or worker to be positive. Sequential testing strategies 
could help mitigate the problem of false negatives, 
which is especially troublesome in this case. We 
consider this approach later when we discuss imperfect 
testing reliability. If a pool of workers tests positive, 
all workers within that pool then receive an individual 
round of testing, each of which also costs τC. This may 
be a conservative assumption, because the round of 
follow-up testing might be cheaper. Novel sequencing 
technology holds the promise of using genetic “bar 
codes” to identify which individual(s) in a pooled 
sample triggered the positive test. This would eliminate 
the need to collect a follow-up individual sample.11

	 We suppose the prevalence of active infection in the 
workforce is π. In our initial development, we assume the 
employer knows prevalence with certainty, even though 
it does not know the identity of the infected workers. In 
our numerical analyses, we explore the consequences of 
uncertainty and show that, while uncertainty is costly, 
employers can still save considerable resources from 
simple pooled testing strategies even when prevalence 
is unknown. 
	 We also suppose the pool size is set at P. Therefore, 
(N/P ) pooled tests are originally run. For instance, an 
employer with 100 workers choosing a pool size of 
five will run 20 initial pooled tests. Moreover, the 
probability that a pool of P workers contains at least 
one infected member is 1-(1-π)P. Note that (1-π)P  
is the probability that all workers in the pool test 
negative.iii The expected number of pools testing 
positive is given by (1-(1-π)P)(N/P ). All P members of 
these COVID-19+ pools will be tested individually. 
Therefore, the expected number of workers receiving 
follow-up tests will be P *(1-(1-π)P)(N/P ) = (1-(1-π)P)N. 
	 In light of the expressions above, the total cost of the 
pooled testing approach will be:

iii Note that we abstract from false negatives or false positives in the testing process. These can be incorporated into the model by allowing for confirmatory testing in 
subsequent steps.
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T(P;π) = ((NτC)/P ) + (1-(1-π)P(NτC).

Because total costs are proportional to NτC, the pool 
size minimizing the total cost of testing is the same 
as the pool size minimizing (T(P;π)/NτC ), namely the 
number of tests per worker. Employing this logic and 
dropping constants from the minimization problem 
yields our objective function, which minimizes the 
number of tests per worker:

min(N≥P≥1)[(1/P ) -(1-π)P ].

Analytical optimization is challenging because the 
optimal pool size has to be an integer. Therefore, we 
solve this problem numerically in the subsequent 
section. Nonetheless, calculus provides us with some 
intuition for how pool sizes change. Employing the 
simplifying assumption of continuous pool sizes, we 
can show the following:
1.	 Provided we are at an optimal pool size, higher 

prevalence never results in larger pool sizes.iv  
Intuitively, when the prevalence is higher, 
enlarging each pool makes it even more likely that 
the entire pool will test positive and necessitate a 
costly round of follow-up testing. 

2.	 Higher prevalence reduces the savings generated 
by a pooled testing approach.v In the case of a 
perfectly reliable test, when illness prevalence is 
less than or equal to 30 percent, pools of three or 
more are helpful.vi

POOL SIZES

We solve numerically for the integer-valued pool 
sizes that minimize the cost function above, and we 
study how these optimal pool sizes vary with the 
active infection rate, π.vii Figure 1 presents the optimal 
integer-valued pool sizes chosen by an employer who 
knows the overall COVID-19 infection rate in its 
workforce. This should be viewed as the theoretical 
maximum savings that can be generated by pooled 
testing.

	 After an initially rapid decline, optimal pool size falls 
rather slowly with increasing COVID-19 prevalence. 
This has important implications for employers who face 
uncertainty about the underlying rate of COVID-19. 
For example, an employer who predicts an underlying 
prevalence of 5 percent will achieve nearly optimal 
outcomes so long as the actual prevalence lies between 
3 percent and 30 percent. That is, the employer’s 

Leonard D. Schaeffer Center for Health Policy & Economics

Figure 1: Optimal Pool Sizes for a Perfectly Informed Employer

iv Assuming continuous pool sizes, the first-order condition for optimal pools is -(1/P^2) - ln(1-π)(1-π)P = 0. Comparative statics then imply that 
[-(2/P^3) - (ln(1-π) )2](dP/dπ) + [(1+P(ln(1-π) ))/(1-π)] = 0. Since ln(1-x)<-x, it follows that ([(1+P(ln(1-π) ))/(1-π)]<((1-Pπ)/(1-π)) ≤ 0, where strict equality holds for all nontrivial 
group sizes W_G>1. If the second-order condition holds, then the term in square brackets is positive. Therefore, for any local minimum with nontrivial pool size P>1, it 
follows that (dP/dπ) < 0. In 0. Since pool sizes are integer-valued, there will be regions where increases in prevalence leave the optimal integer-valued P unchanged. The 
numerical analyses explore this issue in more detail.
v Notice that (dT/dπ) = NτC(1-π)(P-1) > 0. 
vi Define π* (P) as the maximum prevalence at which a pool size of P weakly reduces costs. Therefore, 1/P + (1-(1-π* (P))P) = 1. This implies that π*(P) = 1-(1/P)^(1/P). It 
is straightforward to verify numerically that P=3 results in the highest possible value of π* across integer values of P, and that π*(P)=1-(1/3)^(1/3) ≈ 30.66. 
vii The mathematics here are not new, as similar calculations are presented in Dorfman (1943).
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forecast can be wrong by 40 percent or more without 
major cost consequences.
	 Figure 2 explores this issue in more detail. The figure 
plots cost savings per worker, relative to individual 
testing, as a function of COVID-19 prevalence and the 
pool-size strategy selected. For example, if an employer 
knows that COVID-19 prevalence is 1 percent, the 
optimal pool size of 11 can save 80 percent over the 
strategy of testing all workers individually. The savings 
fall with prevalence, because pooled testing works best 
with large numbers of disease-free pools. Nonetheless, 
even at extremely high COVID-19 infection rates, 
employers can save 30 percent via pooled-testing 
strategies.
	 Figure 2 presents three curves that correspond to 
different pool-size selection strategies. The gray optimal 
pool size curve presents what happens when employers 
know the underlying COVID-19 prevalence and can 
perfectly solve the cost-minimization problem given 
earlier. This is the maximum cost saving that can be 
achieved for any given level of COVID-19 prevalence. 
In contrast, the cardinal and orange curves illustrate 
how much employers can save simply by setting pool 
sizes of four and 11, respectively. Interestingly, the 
pool size of four captures the vast majority of savings 
unlocked by optimal decision-making even when 
prevalence is very small. This suggests that employers 
can still harvest substantial gains from pooled testing, 
even when they do not have good information about 

underlying COVID-19 prevalence. For example, four-
person pools save roughly 75 percent of costs for an 
employer with virtually no prevalence. Pool sizes larger 
than four — even for this employer with negligible 
illness prevalence — can save at most 25 percent more 
in incremental costs. 
	 The orange curve presents a cautionary tale, however. 
If employers respond to uncertainty by erring on the 
side of large pools, this could be costly in the event that 
their actual prevalence is high. The worst-case scenario 
for the four-worker pool strategy is to take cost savings 
down from 80 percent to 71 percent. In contrast, the 
worst-case scenario for the 11-worker pool could 
involve cost increases over universal individual testing 
— indeed, at 20 percent prevalence, the 11-worker pool 
results in very slightly negative savings over universal 
individual testing. Note also that pooling saves money 
for all active infection rates less than 30 percent, which 
is a remarkably broad range, likely to contain nearly all 
real-world cases. 
	 The lesson here is that employers can reap meaningful 
gains from four-worker pools at levels of prevalence 
below 20 percent. Employers with particularly good 
prior information about COVID-19 prevalence may be 
able to reap even larger gains by expanding their pool 
sizes, but they could stand to lose out on substantial 
gains if they are wrong about their underlying infection 
rates.

Figure 2: Cost Savings from Pooled Testing by COVID-19 Prevalence and Choice of Pool Size

iii Note that we abstract from false negatives or false positives in the testing process. These can be incorporated into the model by allowing for confirmatory testing in 
subsequent steps.
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RELIABILITY OF POOLED TESTING

So far, COVID-19 testing remains imperfect. We now 
consider the implications of imperfect test reliability 
for the size of pools and the extent of possible cost 
savings. Define σN as the probability that a true 
negative sample returns a negative test. This is the 
“specificity” of the test, and 1-σN is the associated false-
positive rate. Analogously, define σP as the probability 
that a true positive sample tests positive. This is the 
“sensitivity” of the test, and 1-σP is the associated false-
negative rate. We assume here that the sensitivity and 
specificity of the test are the same when applied to a 
pooled sample as to an individual sample. While pooled 
samples might degrade the reliability of tests — e.g., by 
reducing the concentration of the virus in a sample 
— existing evidence suggests that our simplification 
does not sacrifice much generality. Specifically, existing 
research on pooled COVID-19 testing suggests that 
for pool sizes below 16 the test degradation is relatively 
limited.13

	 Nonetheless, even if pooling does not degrade test 
reliability, the sensitivity and specificity of a pooled-
testing protocol will be different than those of a single-
patient testing protocol. In this section, we explain why 
this is so, and we characterize the associated reliability 
of a pooled-testing approach. We also discuss how to 
improve pooled-testing reliability, and perform some 
numerical analyses to judge the cost and pool-size 
implications. 
	 The source of testing errors matters for the reliability 
of pooled testing.  Errors that occur during specimen 
collection are less problematic for pooled testing 
than errors that occur during test processing.  If an 
individual provides a “bad” specimen, pooled testing 
mitigates some of the consequences, because that 
individual might be pooled with an infected individual 
that provided a “good” specimen. As such, the result 
of the pooled test is not compromised, even though 
individual test results would have been.  In contrast, 
consider the case where a lab makes an error in 
processing a pooled specimen. This error invalidates 
the test for an entire pool of people, making it more 
harmful than a similar error perpetrated on a single 
person’s test. We begin our analysis by assuming that 
all errors are of the “worst-case scenario” form that 
affects the entire pooled sample. We then explore the 
improvements in reliability that would occur if errors 
instead occur at the specimen collection level.

Specificity of Pooled Testing
Consider the case of a true-negative patient. The 
probability that they will test negative yields the test’s 
specificity. Under individualized testing, the probability 
of an accurate test is σN and so is the test specificity. 
To construct the associated specificity under pooling, 
notice that the true-negative patient receives a negative 
test result if: 1) their pooled sample tests negative; or 2) 
their pooled sample tests positive, but their individual 
follow-up test comes up negative. As before, define 
the pool size as P and the prevalence as π. Since this 
patient is already truly negative by assumption, the 
probability of their pool being truly negative is given by  
(1-π)(P-1), and the probability of the pool being positive is  
1-(1-π)(P-1). As discussed above, we start by assuming 
that testing errors consist of the entire pooled sample 
being mishandled.  That is, we assume that an error 
impacts every member of the sample – i.e., testing 
errors are perfectly correlated within the sample.  
Therefore, the probability of a negative pooled test 
result is: 

(1-π)(P-1) σN+(1-(1-π)(P-1))(1-σP ).

This is the probability of a true-negative result plus 
the probability of a false-negative test result. Similarly, 
the probability of a positive pooled-test result can be 
constructed as:

[(1-(1-π)(P-1) ) σP+(1-π)(P-1) (1-σN)].

This is the probability of a true-positive result plus the 
probability of a false-positive result. 
	 In light of these expressions, the probability that our 
true-negative patient tests negative in a pooled-testing 
strategy is:

(1-π)(P-1)σN + (1-(1-π)(P-1))(1-σP) + [(1-(1-π)(P-1))σP + 
(1-π)(P-1)(1-σN )]σN = [σNσP + (1-σP )] +  
(1-π)(P-1)[σN - σN^2 - 1 + σp + (1 - σP )σN].

Some algebraic manipulation proves that this “pooled 
specificity” exceeds the underlying test specificity, 
σN.viii As a result, pooled testing increases testing 
specificity and reduces the probability of false positives. 
Intuitively, the pooled test creates an additional hurdle 
for a false-positive result, because the true-negative 
patient must end up both with a positive pooled 
test and an inaccurately positive individual test. The 

viii To see why, first notice that [σNσP+(1-σP)] is a weighted average of σN and unity. The term [σN - σN^2 - 1 + σp + (1 - σP)σN] can be either negative or positive. If it is 
positive, the result follows immediately. If, however, it is negative, then: 
[σNσP + (1 - σP)] + (1-π)(P-1)[σN - σN^2 - 1 + σp + (1 - σP)σN ] > [σNσP + (1 - σP)] + [σN - σN^2 - 1 + σp + (1 - σP)σN] = σN(2 - σN) > σN.
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additional hurdle of the pooled test reduces the chances 
of false positives. 

Sensitivity of Pooled Testing
These benefits of pooling for test specificity come at 
the cost of reduced sensitivity. Consider the alternative 
case of a true-positive patient. Under individualized 
testing, the probability of an accurate positive test 
is σP, which is also the test sensitivity. Under pooled 
testing, this patient receives an accurate result if their 
pool tests positive and their follow-up test comes up 
positive. Since this individual is a true positive, their 
pool is also truly positive. Therefore, the probability 
of a positive pooled test is σP. This individual will test 
positive if their pool tests positive, and they then test 
positive in the individual testing round. Therefore, the 
probability that this true-positive individual ends up 
testing positive is σP^2. To reiterate, we are still assuming 
the worst-case scenario of correlated testing errors 
within the pool.
	 Notice that pooling reduces the sensitivity of testing 
by the factor σp. For example, if the sensitivity of 
the underlying test is 90 percent, the sensitivity of a 
pooled approach will be 81 percent, and so on. This 
degradation can become quite problematic in real-
world applications. For example, suppose the sensitivity 
of the underlying test is 70 percent; as we noted earlier, 
this is a realistic estimate for COVID-19 testing at 
present. In this case, pooling approaches would yield 
a true sensitivity of 49 percent, which is worse than a 
coin flip. 
	 Absent improvements in the underlying assay 
technology, one feasible solution is to perform multiple 
tests on the pooled samples. In particular, suppose we 
were to run two independent tests on a pair of pooled 
samples from the same pool. In this case, the true-
positive patient will receive an individual test if either 
pooled test turns up positive. Therefore, the probability 
that the true-positive patient tests positive will be:

σP^2 + (1-σP)σP^2 = σP^2(2-σP) >σP^2.

In this case, for an assay with an underlying sensitivity 
of 70 percent, the sensitivity of the pooled-testing 
protocol will be 63.7 percent, significantly better than 
the 49 percent sensitivity produced by pooled testing 
without a confirmatory round. 
	 Clearly, however, multiple rounds of pooled testing 
will reduce the cost savings achievable via pooling. 
Moreover, since it is now costlier to test more pools, 

it will also increase the optimal pool size. We now 
quantify these effects via numerical analysis of the 
problem.

Economics of Imperfected Pooled Testing with 
Sample Processing Errors
As above, suppose we conduct a second round of 
testing on every pooled sample. Therefore, define the 
true-positive rate for a pool as TP ≡ σP (2 - σP); this is 
the probability that a true-positive pool tests positive 
after two independent rounds of testing. Analogously, 
define the false-positive rate for a pool as FP ≡ (1+σN)
(1-σN), which is the probability that a true-negative 
pool tests positive after two rounds of testing.
	 Conservatively, we assume that two rounds of testing 
on each pool doubles the cost of the pooled-testing 
stage. Therefore, testing cost per worker with two tests 
per pool is given by:

(2τC)/P+{(1-(1-π)P ) T_P+(1-π)P F_P } τ_C.

This can be simplified as:ix 

(2τC)/P+{T_P+(1-π)P (F_P-T_P)} τ_C.

This is the objective function we will minimize. 
Analytically, it remains true that higher prevalence, π, 
leads to higher optimal pool sizes. It can also be shown 
that, compared to the single round of pooled testing, 
adding a confirmatory round increases the optimal 
pool size. Intuitively, confirmatory testing increases 
the relative cost of the pooled round compared to the 
individual round. Therefore, there is an incentive to 
economize on the number of pools by expanding their 
sizes. 

Numerical Analysis of Imperfect Testing with 
Sample Processing Errors
We now calculate the optimal group size and cost savings 
associated with imperfect testing. For concreteness, we 
assume that σP = 70%, so that the false negative rate is 
30 percent. And, we assume that σN = 99%, so that the 
false positive rate is 1 percent. 
	 Figure 3 demonstrates that imperfect testing with 
these parameters roughly doubles the optimal group 
size, compared to the perfect testing case. The cost of 
testing each pooled sample has doubled, so the optimal 
response is to reduce the number of pools. While this 
response mitigates some of the cost impact, imperfect 
testing somewhat limits the cost savings achievable via 

ix The associated marginal cost per worker of a higher pool size is given by -[(2τC)/P2] + ln(1-π)(1-π)P(FP - TP )τC. The second derivative of the objective function is
(4τC)/P3 + [ln(1-π) ]2(1-π)P(FP - TP)τC.
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Figure 4: Cost Savings from Pooling When Tests are Imperfect

Figure 3: Optimal Pool Sizes Under Imperfect Test Reliability

0

10

20

30

40

50

0.1% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

49

8

16

6

12

5

10 9
4

8

3 3 3 3

O
PT

IM
A

L 
PO

O
L 

SI
ZE

COVID-19 PREVALENCE

8 7 7 7 7
6 6 6 6 6

0%

20%

40%

60%

80%

100%

0.1% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 13% 14% 15%

SA
VI

N
G

S 
FR

O
M

 P
O

O
LE

D
 T

ES
TI

N
G

POOL SIZE = 49 POOL SIZE = 7 OPTIMAL POOL SIZE

COVID-19 PREVALENCE



99

pooling. Figure 4 illustrates the implications for cost 
savings.
	 For a given active infection rate, cost savings have 
fallen. For example, at a prevalence of 4 percent, 
roughly 60 percent can be saved with a perfect test. 
With imperfect test reliability, this falls to just below 
50 percent. (Less reliable tests requiring additional 
confirmatory rounds would naturally drive this number 
down even further.) While this is a nontrivial increase 
in costs, it is far less than proportional to the doubling 
of the pooled-test cost. This is because the costs of the 
pooled tests represent only a fraction of total testing 
costs, and because the growth in pool sizes partially 
mitigates the effect on costs. Moreover, even with 
imperfect tests, pooled testing remains viable for many 
localities in the United States. Significant savings can 
be achieved for localities with active infection rates 
below 10 percent, and some savings are achievable with 
active infection rates as high as 15 percent. Moreover, 
in the case of imperfect testing, a pool size of seven 
performs reasonably well at capturing the lion’s share 
of cost savings, even when prevalence is uncertain. 
This illustrates that higher “rule-of-thumb” pool sizes 
are necessary when tests are imperfect to mitigate the 
cost-increasing effects of imperfect testing.

Specimen Collection Errors
The analysis above considered a “worst-case scenario” 
for the impacts of testing errors. We assumed that 
errors occur at the level of the pool, not the individual 
contributing to the pool. In other words, the testing 
error affects everyone in the pool at the same time — it 
is “perfectly correlated.” For the sake of concreteness, a 
lab that mishandles an entire sample creates a perfectly 
correlated error. A piece of testing equipment that 
occasionally delivers an inaccurate result does the 
same.  However, as discussed above, some or even many 
testing errors in a pooled context might be uncorrelated 
across the pool members. An example is an improper 
specimen collection – e.g. from a poorly executed nasal 
swab. Unless all members of the pool are swabbed 
by the same person using the same poor technique, 
swabbing error may not propagate to the entire pool. 
This is the case of “uncorrelated” testing error, or what 
we refer to as “specimen” error. To illustrate the effects 
of correlatedness in testing error, we consider perfectly 
uncorrelated specimen errors as a counterpoint to 
the earlier discussion of perfectly correlated sample 
processing errors.
	 Under individual testing, test specificity – i.e., the 
probability of a positive patient receiving a positive 
test result -- was σP.  Under a single-round of pooled 

testing with sample processing errors, this probability 
fell to σP^2.   We showed that investing in a confirmatory 
testing round would increase this probability to  
σP^2 (2 - σP).  We now study what happens to specificity 
when errors are due entirely to specimen collection.  
	 Mathematically, consider the case of a true-positive 
person participating in a pool. The probability that 
each other individual pool member contributes a 
negative sample is given by [(1-π) σN+π(1-σP)]. This 
is the probability of being a true negative, plus the 
probability of being a false negative. Therefore, the full 
probability of the pool testing positive — conditional 
on the presence of at least one true-positive member — 
is given by:

σP + (1 - σP ){1 - [(1 - π)σN + π(1 - σP)](P-1) } > σP.

The left-hand side reflects the probability of two 
separate states:  1) the true positive person contributes 
an accurate sample, which has probability (1 - σP); and 
2) the true positive person contributes an inaccurate 
sample, but someone else in the pool tests positive.
	 With correlated errors, the sensitivity of the initial 
pooled test was simply σP, which is independent of the 
pool size. When errors are uncorrelated, however, the 
sensitivity improves with the size of the pool because 
more pool members are providing “insurance” against 
a false result for the pool as a whole. Indeed, the 
expression above indicates that, as pool size approaches 
infinity, sensitivity approaches 100 percent. While this 
is not a realistic case, it does demonstrate that pool-size 
growth always improves the sensitivity of the pooled-
testing round.
	 Of course, the outcome of interest is whether this 
true positive person ultimately tests positive himself.  
The probability of this happening is exactly σP, which 
is identical to what it would be under individual testing.  
To see why, recall that we can segment all outcomes 
into two mutually exclusive sets:  1) the true positive 
person contributes an accurate sample, or 2) the true 
positive person contributes an inaccurate sample.  In 
the first case, the true positive person always receives 
a positive test result, because the pooled sample will 
test positive, and so will the individual follow-up.  
However, in the second case, the true positive person 
never receives a positive test result, because her follow-
up test will always come back negative.  Therefore, 
since the probability of the first case is σP, it follows 
that the total sensitivity of pooled testing in this case 
is σP.
	 In reality, testing errors arise from specimen 
collection and sample processing.  Without more 
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detailed information about the relative importance of 
each error type, it is difficult to pin down the exact 
reliability measures. However, our analysis provides 
some bounds for the reliability of pooled testing.  In the 
best-case scenario, with specimen collection errors only, 
pooled testing is just as reliable as individual testing.  In 
the worst-case scenario, with sample-processing errors 
only, pooled testing exhibits much lower sensitivity, but 
this issue can be mitigated via confirmatory testing of 
the pooled sample.

IMPLICATIONS
The economic shutdown from COVID-19 continues 
to impose enormous costs, even as it produces very 
large survival and health benefits.18 Counting up the 
economic damage at this early stage poses considerable 
challenges, but preliminary estimates suggest that 
each month of shutdown hacks 5 percent (or about 
$1 trillion) off our annual GDP.19 In contrast, testing 
every American worker, even at a per-worker cost of 
$500, results in the comparatively “small” cost of around 
$60 billion. Nonetheless, if this cost ends up falling 
on American businesses and school systems, already 
crippled in the aftermath of a major shutdown, even 
more economic damage could result. Finding cost-
effective ways to test might provide a way out of the 
shutdown. 
	 Our estimates suggest that pooled testing could 
lower testing costs by half or even three-quarters 
for many schools and businesses, with an acceptable 
loss in test sensitivity. The result could be tens of 
billions of dollars saved, and even more if firms need 
to test workers repeatedly over the course of the 
epidemic. This strategy could be particularly beneficial 
for employers who feel compelled to test employees 
frequently — such as those in close contact with the 
public — especially if prevalence among these workers 
is low. 
	 As new and better information about prevalence 
arrives, savings will likely increase. However, the deep 
uncertainty around infection prevalence today should 
not deter businesses from employing pooled tests. 
Simple strategies of pooling four to seven workers 
could save businesses 50–60 percent over standard 
individualized testing. 
	 From a macroeconomic perspective, pooled testing 
could bump GDP growth numbers up by 20 percent or 
more. For instance, at Medicare rates, PCR testing costs 
$50 to $100.20,5 With roughly 160 million Americans in 
the labor force, at the upper end, each wave of COVID-
19 testing costs around $16 billion. If pooled testing 
helps employers realize 50 percent savings on these 

costs, this generates $8 billion per wave of testing that 
accrues to the bottom lines of American businesses. If 
testing is repeated bimonthly — roughly the length 
of one quarantine period — the annual savings of 
$192bn amounts to 0.8 percent of total GDP. In 2019, 
GDP grew by 2.3 percent.21 Thus, pooled testing could 
save about two-fifths of the economic growth we 
experienced in 2019. Since 2020 is likely to be a much 
leaner year, the effects will be even more dramatic. 
	 As noted above, concerns persist about diagnostic 
accuracy, particularly the high probability of false 
negatives, coupled with the risk of high costs that such 
false negatives can create. Employers can consider 
implementing testing in conjunction with other 
monitoring strategies, such as symptom monitoring 
and contact tracing. Moreover, testing technology is 
advancing rapidly, which will likely increase sensitivity 
and reduce costs, complexity and discomfort. For 
example, recent evidence suggests that saliva-based 
tests may be a suitable alternative to nasal swabs, and 
companies are working to develop high-capacity, rapid 
testing technologies.15,22

	 Pooling is a well-established method to perform 
tests cost effectively and at a much greater scale than is 
currently feasible, with an acceptable loss of sensitivity. 
Many experts have pointed to frequent and widespread 
testing as a prerequisite for a return to economic 
normalcy.23 Pooled testing — even in groups as small 
as four — will allow employers and schools to conserve 
scarce resources, save money and get Americans back to 
business.
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